08
풍도 슬레브
(PSC KC슬레브)

공법개요

- 터널 라이닝 설치 시, 프리캐스트 브라켓 적용을 위한 인서트 설치
- 프리캐스트 브라켓 및 KC 프리캐스트 PSC 콘크리트 슬래브 설치
- 곡볼트 혹은 연결철물을 이용한 접합으로 슬래브 일체화
- 슬래브 접합부 마감 및 양끝단 브라켓에 무수축 몰탈 타설
- 슬래브 설치 후 내화도료를 시공하여 구조적 안전성 확보 및 경제성, 유지관리성이 우수한 공법

공법개요

터널 라이닝 공정 간소화로 공사기간 단축

- 터널 라이닝 거무집 설치시 브라켓부 설치가 복잡함

KC 풍도슬래브 공법

- 터널라이닝 거푸집 설치시 PC 브라켓 설치용 인서트매입 \rightarrow 시공간편공기단축

인서트-볼트 결합 방식으로 간편한 설치

공법특징

구조적으로 최적화된 단면 형상

- 경량콘크리트를 사용항에도 획일적인 단면으로 구조효율이 낮았던 기존형상

접합면 간편 시공

ㅂ빔 사이에 구멍을 뜷어 그 사이로 철근을 연결후 설치 하는 복잡하고 오래걸리는 시공

구조적으로 최적화된 단면형상 \rightarrow 재료비 절감효과 \triangleright 기존대비 물뢍 30% 감소, 무게 14% 감소

-1안

- 슬래브간 곡볼트 연결로 설치가 쉽고 안정적인 형상

공법특징(성능)

- 구조적으로 안전하고 경제적인 (Optimized Slab) 공법 채택

자착식 방수시트

공법의신뢰성

사례 OKC-SLAB 특징

1) 간편한 시공으로 기간단축

PROBLEM
복잡한 연결로 시공이 어려움

SOLUTION

슬래브간 곡볼트연결 1 안) 또는 연결철물 매압(곱안은으여노간간편한 또니농 구축

2) 단면의 최적화 달성

PROBLEM

획일적 단면으로 구조효율 낮고 슬래브 자중과다

SOLUTION

연속단 슬래브의 특성에 맞추어 필요부위에 PC 슬래브 플랜지가 위치하도록 설계하여 단면 중량 최소화
< 중앙부 단면 >

< 양단부 단면 >

< 종방향 단면 >

3) 내화성능 확보

PROBLEM
별도의 내화퓬넬 설치(마그네숨 보드 부착)

SOLUTION
 RABT 내화 테스트 통과

상실근 피복두께 50 mm 이상확보 및 폭열 방지용 PP섬유 혼입 - FNS시멘트 적용으로 내화성능 항상

필요시

- 화재 발생 시 강력한 내화 (耐火)성능을 발휘하여 재해를 방지하도록 설계된 3 시간 내화성능의 무용제형ㅇㅇ에폭시 타입의 내화 도료 채택 - 제품 제작후 공장에서 내화도료 도포 및 건조 후 현장 납품 - 천장 슬래브 도료 마감으로 인한 미관 우수

시공순서

- 비계, 동바리 등 가설 공사가 필요 없어 공기가 빠름
- 슬라브 접합부 곡볼트 연결 및 연결철물 매입으로 간편한 시공

